GABAergic neural activity involved in salicylate-induced auditory cortex gain enhancement.

نویسندگان

  • J Lu
  • E Lobarinas
  • A Deng
  • R Goodey
  • D Stolzberg
  • R J Salvi
  • W Sun
چکیده

Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate (SS)-induced hyperexcitability and "increased central gain," we examined the effects of GABA receptor agonists and antagonists on SS-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of SS significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of SS also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the SS-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the SS-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the SS-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by SS may arise from a SS-induced suppression of GABAergic inhibition in the AC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice

The prevalence of tinnitus is known to increase with age. The age-dependent mechanisms of tinnitus may have important implications for the development of new therapeutic treatments. High doses of salicylate can be used experimentally to induce transient tinnitus and hearing loss. Although accumulating evidence indicates that salicylate induces tinnitus by directly targeting neurons in the perip...

متن کامل

Salicylate induced neural changes in the primary auditory cortex of awake cats.

Systemic administration of salicylate at high doses can induce reversible tinnitus and hyperacusis in humans and animals. For this reason, a number of studies have investigated the salicylate-induced changes of neural activity in the auditory cortex (AC); however, most previous studies of the AC were conducted on brain slices or anesthetized animals, which cannot completely represent the actual...

متن کامل

Salicylate increases the gain of the central auditory system.

High doses of salicylate, the anti-inflammatory component of aspirin, induce transient tinnitus and hearing loss. Systemic injection of 250 mg/kg of salicylate, a dose that reliably induces tinnitus in rats, significantly reduced the sound evoked output of the rat cochlea. Paradoxically, salicylate significantly increased the amplitude of the sound-evoked field potential from the auditory corte...

متن کامل

Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats

Previous studies have shown that sodium salicylate (SS) activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The...

متن کامل

Sodium Salicylate Suppresses GABAergic Inhibitory Activity in Neurons of Rodent Dorsal Raphe Nucleus

Sodium salicylate (NaSal), a tinnitus inducing agent, can activate serotonergic (5-HTergic) neurons in the dorsal raphe nucleus (DRN) and can increase serotonin (5-HT) level in the inferior colliculus and the auditory cortex in rodents. To explore the underlying neural mechanisms, we first examined effects of NaSal on neuronal intrinsic properties and the inhibitory synaptic transmissions in DR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 189  شماره 

صفحات  -

تاریخ انتشار 2011